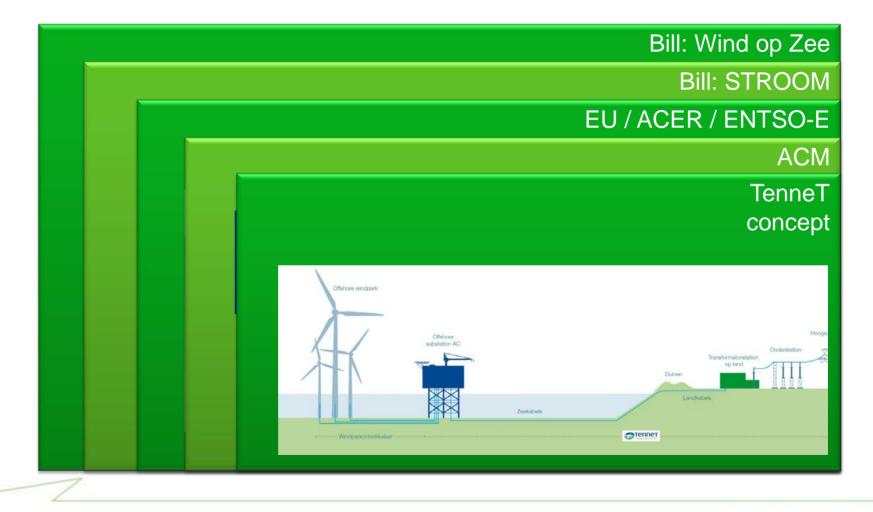
Agenda

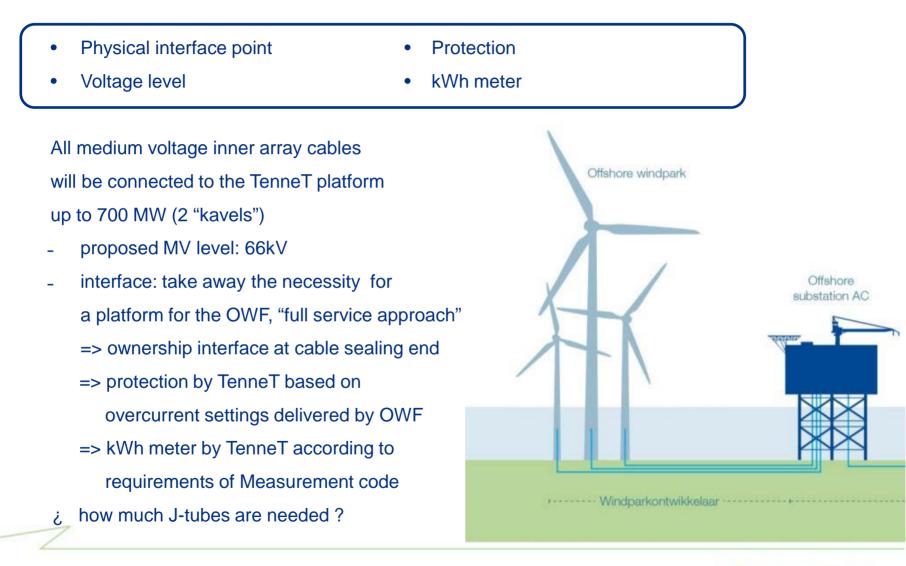
technical options & requirements interface OWF - TenneT Arnhem, 27 November 2015

- Opening / welcome 1.
- 2. Introduction
- 3. Context
- HV/MV connection interface OWF TenneT 4.
 - Physical interface point
 - Voltage level
 - **Operation of bays**
 - Data links

- kWh meter
- **SCADA**
- Capacity, guaranteed or overplanting
- Requirements from RfG code (TenneT document SOC 11-175) Bart van Hulst 5.
 - Voltage and frequency support ۲
 - Fault ride through ۲
- A.O.B. 6.
- 7. Wrap up

- **Compensation requirements** •
- . . .


Protection



Approach from TenneT in development of the concept has been:

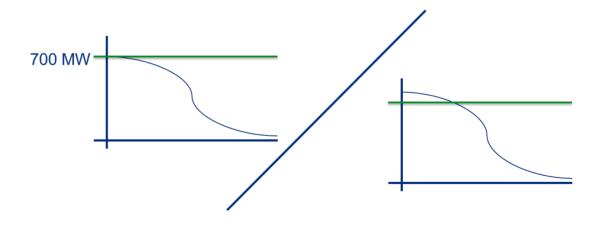
HV/MV connection interface OWF – TenneT 1/3

HV/MV connection interface OWF – TenneT 2/3

SCADA

- Operation of bays
- Data links

- connection platform shore will be a 3-phase 220kV cable with fibers for data transmission available for OWF
 => connect on TenneT-MUX on platform and "retrieve" at HV-substation TenneT
 => no "intelligence" with computers needed on platform
 => therefore no SCADA equipment expected from OWF on platform
- operation of connection MV-bays will be provided by TenneT control centre on request of OWF
 => visibility of park by OWF should be arranged by OWF at last windturbine before the platform
 => redirection of output on the MV busbar during maintenance or failure will be handled by TenneT



HV/MV connection interface OWF – TenneT 3/3

• Capacity, guaranteed or overplanting

- TenneT has no preference on this option
 - => if overplanting, maximum output control should be organized
 - => decision on choice needed given cable design parameters

European network codes

- The European Commission, together with many stakeholders, have established that greater effort is needed to create a secure, competitive and low carbon European energy sector and a pan-European Internal Energy Market. Network codes are intended as a tool to reach this objective by complementing existing national rules to tackle cross-border issues in a systematic manner
- Consequences:
 - More cross border transport of energy
 - Maintaining the balance and system security of supply will require more effort, to facilitate the market
 - More cooperation between TSO and DSO (TenneT and Tennet Offshore)
- Requirement for Generators

Netcodes ENTSO-E

Planning RfG

- Network code version ready for comitoligy expected this year
- Dutch translation of RfG currently under construction, expected early 2015
- Q1/Q2 2015 cross border meetings national authorities will commence
- Expected voting by EC mid 2015 expected. Then code will be in force
- Then 3 year for implementation \rightarrow national definition of the non-exhaustive requirements

- New grid code applicable for all new initiatives
- Some requirements are non-exhaustive, can be further detailed at national level
- New network code for Offshore Netherlands shall be developed
- Provisionally the non exhaustive requirements currently are defined in the document "SOC 11-175"

• Basic requirements: Voltage and frequency envelope

Frequency

Requirements regarding frequency envelope are shown in Table 1.

Table 1

Synchronous Area	Frequency Range	Time period for operation
Continental Europe	47.5 Hz – 48.5 Hz	30 minutes
	48.5 Hz – 49.0 Hz	30 minutes
	49.0 Hz – 51.0 Hz	Unlimited
	51.0 Hz – 51.5 Hz	30 minutes

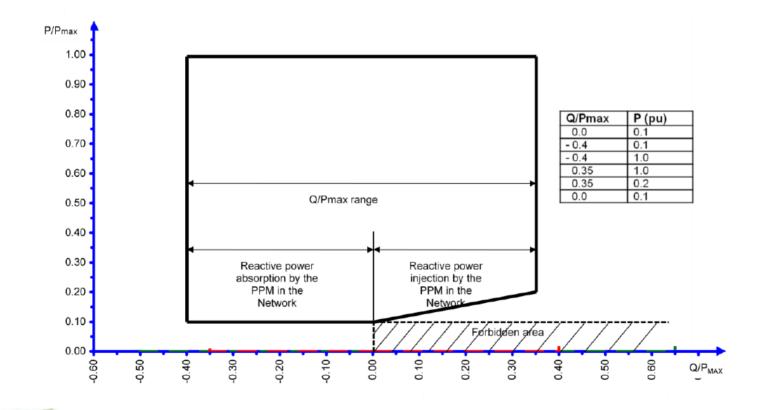
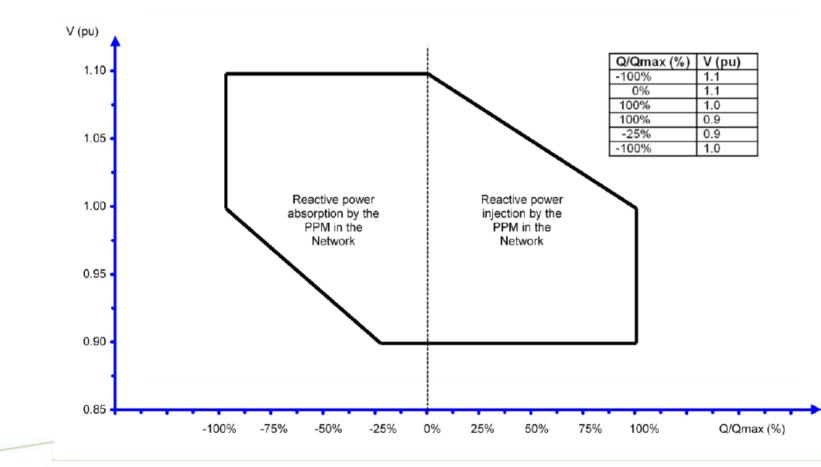


Table 2


Synchronous Area	Voltage Range	Time period for operation
	0.80 pu – 0.85 pu	30 minutes
Continental Europe	0.85 pu – 0.90 pu	60 minutes
Continental Europe	0.90 pu – 1.10 pu	Unlimited
	1.10 pu – 1.15 pu	60 minutes

Reactive power capability \rightarrow V – Q/Qmax profile

Alan Croes

Agenda

technical options & requirements interface OWF - TenneT Arnhem, 27 November 2015

- **Opening / welcome** 1.
- 2. Introduction
- 3. Context
- HV/MV connection interface OWF TenneT 4
 - Physical interface point
 - Voltage level
 - **Operation of bays**
 - Data links

- kWh meter •
- SCADA
- Capacity, guaranteed or overplanting •
- Requirements from RfG code (TenneT document SOC 11-175) Bart van Hulst 5.
 - Voltage and frequency support
 - Fault ride through
- A.O.B. 6.
- 7. Wrap up

- Compensation requirements
- •

Protection

