

ONL 15-359

TenneT

Stakeholder engagement and Consultation Process OWFs

Expert Meeting, 02-07.2015, Arnhem

Anna Ritzen / Rob van der Hage

Stay tuned. Safety first!

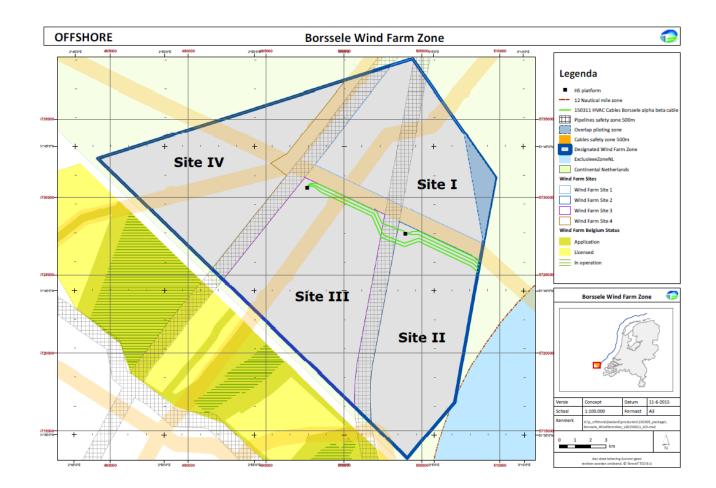
Voor uw en onze veiligheid vragen we uw aandacht voor de volgende veiligheidsmaatregelen.

In geval van een ontruiming van het pand:

- Volg de vluchtroute zoals aangegeven.
- Gebruik de trap in plaats van de lift.
- Ga naar het verzamelpunt.
- Volg de aanwijzingen van de bedrijfshulpverlener. Deze is geval van een ontruiming aanwezig.

Welcome

Agenda (02.07.2015)



WHEN	WHAT	TYPE OF SESSION
09:00-09.15	Welcome Agenda for today	Introduction
09:15-10.00	T.2 Number of Bays	Discussion
10.00-10.15	T.6 Protection	Notification
10.15-10.30	Coffee break	
10.30-10.45	T.8 SCADA, communication interface, data links	Notification
10.45-11.30	T.4 Acces to Platform	Discussion
11.30-11.45	T.9 Metering	Notification
11.45-12.30	T.12 Redudancy / availability	Discussion
12.30-13.15	Lunch	
13.15-13.45	Planning legal consultation	Information
13.45-14.45	T.7 Reactive Power Compensation	Discussion
14.45-15.00	Coffee break	
15.00-15.45	O.2 Stranded Asset Mitigation	Discussion
15.45-16.30	P.1 Planning	Discussion
15.55-16.00	Closure	

T.16 Physical coordinates platform Information

- Location first platform: 503919, 5727665 (ETRS_1989_UTM_Zone_31N)
- Reference: ONL 15-360-T16_Physical coordinates_PP_v1

T.2 Number of Bays

Discussion

Input

- Questionnaire as sent out to wind turbine generator suppliers
- TenneT position paper: ONL 15-060-T2_ J tubes_ bays_PP_v2

Already finalised for decision making

- Voltage level of inter-array cables: 66 kV (ONL 15-058-T1_Voltage level_PP_v2)
- A standard platform shall be equipped with 18 J-tubes for the inter array system:
 - 2x 8 J-tubes for offshore PPM
 - 1 J-tube installed for possible test purposes
 - 1 J-tube installed for the connection to the neighbouring platform

Main considerations

- Constraints per string:
 - 1. Miniumum power 45 MW
 - 2. Maximum current of 630 A per string,
 - 3. Maximum total power per transformer winding of 210 MW.
- Combining two string on one bay the number of bays will be reduced from maximum 8 per PPM down to 4. Hence, 2 to 4 bays reduction per 350 MW wind farm; 4 to 8 bays reduction per platform, depending on the infield lay-out.
- Regarding the connection of two cable to one switchgear bays, two options have been investigated:
 - two cable connected to the switchgear via one cable disconnector;
 - two cable connected to the switchgear via two separate cable disconnectors

Analysis

- Reducing the number of bays by connecting two strings to 1 bay shows to be effective.
- One single cable disconnector for both infield strings reduces CAPEX, but also reduces availibility leading to increased production loss costs.
- Two cable disconnectors, one for each infield string, leads to almost the same CAPEX cost reduction, but with an availability almost equal to one bay for every.
- The number of bays with double infield cable connections will be four per 350 MW wind farm. In addition, one spare bay will be introduced as well as space for yet another bay.

Position

TenneT states that with the 66 kV inter-array cables (based on conservative 64 MW per cable) a standard platform shall be equipped with 18 J-tubes for the inter array system:

- 2x 8 J-tubes for offshore PPM
- 1 J-tube installed for possible test purposes
- 1 J-tube installed for the connection to the neighbouring platform

TenneT states that with the 66 kV inter-array cables, two cables will be connected to one 66kV GIS bay on the platform, via two separate cable disconnectors. The amount of 66kV bays available per PPM will be five.

For dimensioning of the J-tubes, the diameter of the 66 kV cable is estimated to be 160 mm. The inner diameter of the J-tube shall be at least 2,5 times the diameter of the cable, resulting in at least 400 mm

Questions & concerns

T.6 Protection

Notification

Summary of feedback

- **Consensus**. It is possible to standardise the general functional specification of the protection on all five platforms, including requirements with respect to space on the standardised platform.
- Consensus. Extra requirements of the connected PPM, impedance or distance protection, will be taken into account with space for one extra relay in the standard cabinets on the platform. In close alignment with the connected parties, TenneT will fill in the final protection scheme and equipment.

Notification

TenneT's position on 'T.6 Protection':

- TenneT will standardise the protection equipment on the platform of the offshore PPM inter-array cable strings to the TenneT offshore transformer platform, by implementing a standard protection system, aligned with the connected party, owned, operated and maintained by TenneT for all five platforms to be realised by TenneT up to 2023.
- TenneT will decide post award of bid, in consensus with selected project developer, on details of protection system.

Coffee break

T.8 SCADA, communication interface and data links Notification

Summary of feedback

- Consensus. There is a general consensus that installing the majority of the SCADA system onshore (including the PCM's) could be potentially beneficial with regards to costs over the lifetime of the windfarm. Also overall consensus has been reached this could be implemented as such taking into account the below mentioned points of concern.
- Concern. There is a general concern of a risk that communication between the onshore part of the SCADA system and the windturbines could be lost
 Mitigation/Follow-up: Investigated the availability and back-up of the data link between onshore and offshore (see position paper).
- Remark. During the commissioning phase there is a need for a system offshore where both TenneT and the developer can work from. Communication needs to fast and efficient.
 Mitigation/Follow-up: Intention included to work together offshore during commissioning and agreements on way of communication

Summary of feedback

 Remark. Request to keep as many options open as possible and therefore reserve sufficient space for the WPO's at the offshore platform and the maximum sufficient amount of fibres for the WPO's to be used.

Mitigation/Follow-up: Investigated which flexibility with regards to offshore platform space and amount of fibres in the export cable can still be kept without increasing costs.

• **Remark**. Defining the amount of fibres and offshore platform space should also take into account sufficient capacity in order to use/transport to shore: LiDAR system, visibility and wave measurements, camera and meteo station.

Mitigation/Follow-up: Investigated impact on available space needed for equipment and the minimum amount of fibres for the WPO's. Additionally investigated possibilities to share the additional systems meteo-station.

Notification

TenneT's position on 'T.8 SCADA, communication and data links':

For the PPM SCADA and communication system (owned by the WPO), TenneT intends to make available on the five offshore platforms to be realised by TenneT up to 2023:

- A telecommunication room of ~20m2 for each WPO to install WPO owned cabinets with following services supplied by TenneT: sufficient CT/VT connections, HVAC (Heat, ventilation, air conditioning), a redundant and uninterruptable power supply, fire detection and extinguishing;
- A room on the TenneT onshore substation of ~48 m2 (~6x~8) with following services supplied by TenneT: HVAC, a redundant and uninterruptable power supply, fire detection (no fire extinguishing);
- Sufficient patch panels to connect the fibres of all array cable strings (maximum amount to be determined, but patch panel capacity will be at least sufficient for 24 fibres per string). If required patch panels for array cable fibre optic cables may be installed in the WPO room

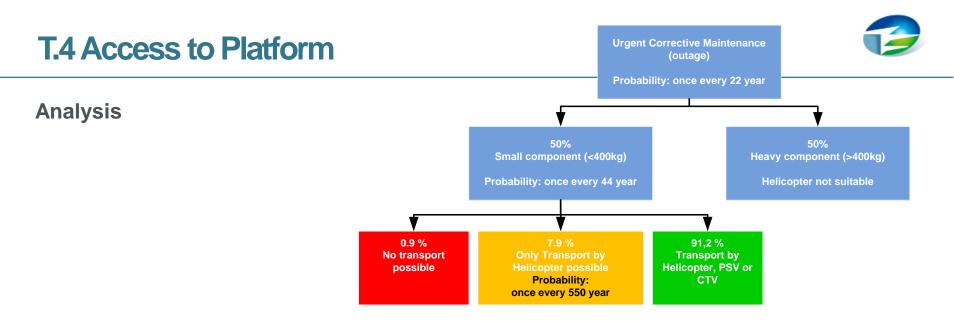
Notification (continued)

 Sufficient optical fibre pairs in both export cables to connect the main switches to the onshore communication interface point. Exact amount to be determined, but as an indication in each export cable 24 fibres will be available for each WPO (48 fibres in total per WPO).

T.4 Access to Platform

Discussion

Input


- DNV-GL: High level review helideck and accommodation Doc: 130112-NLLD-R1 Rev. A-Public Version, 9 June 2015
- Position Paper ONL 15-216-T12_Redundancy_availability_PP_v1
- Expert Meeting 12-13 May 2015
- Feedback received from website

T.4 Access to Platform

Main considerations

- The following access methods are evaluated:
 - Crew Transfer Vessel (CTV) & Boat landing
 - Platform Supply Vessel (PSV) & Walk2Work Solution
 - Helicopter & Helicopter Platform
 - Helicopter & Helicopter hoisting
- Assessment factors:
 - o Safety
 - Availability (of access method, weather and sea-state dependency)
 - Direct costs
 - Response time
 - Required safety zones (and effect on the wind park)
 - Trends in the offshore market

- RAM studies indicate an availability of 99,1% of the high voltage system. In 50% of the cases, the failure will be a large component which cannot be fixed by intervention of a helicopter.
- The response time of platform supply vessels and CTV, taking into account the induction time on the heliport and the limited distance, does not differ significant.
- The additional cost of a helicopter platform is estimated to be 3-4 million CAPEX and likewise the OPEX of the platform will increase.
- The addition of a helicopter platform requires an obstacle-free area around the offshore substation to ensure safe helicopter traffic. The incorporation of a helicopter platform would therefore reduce the already limited available space for offshore wind parks.

Analysis

- The low failure rate combined with the limited additional availability does not outweigh the additional cost of a helicopter platform and the reduction of available space for offshore wind parks.
- A helicopter winching area will be included in the design. The cost of a winching area is limited and provides additional safety services on the platform. TenneT will examine the option to use a helicopter hoist for urgent corrective maintenance. At this time it is unknown if the authorities permit such operations.

Ways of access

- Following feasible ways of access have been identified by TenneT for WPO's representative(s) (as well as TenneT's subcontractors):
 - 1. <u>Accompanied only</u>. Access of WPO's representative(s) to the platform only when accompanied by (a) TenneT representative(s).
 - 2. <u>Unaccompanied access</u>: The WPO's representative(s) is/are allowed to independently access the platform for the room(s) with WPO owned equipment without accompaniment by a TenneT representative, but under the safety and operational regulations and requirements, as (to be) determined by TenneT.

Position

Due to low failure rate (platform outage), average distances to shore and limited additional availability of helicopter transport, TenneT concludes to boat landing and W2W solutions as the standard access method. Helicopter hoisting will be used for emergency response. Therefore, TenneT will not integrate a helicopter platform in the design of the 700MW AC Offshore Platform.

TenneT is inclined towards allowing access for WPO's representative(s) to the offshore platform without accompaniment. However, only specific rooms (WPO equipment room(s) and general room) will be accessible. If WPO's representative(s) needs to access other areas (e.g. switchgear rooms where inter array cables are connected), accompaniment by (a) TenneT representative(s) is required. TenneT and WPO's will make operational agreements regarding response time of accompanying staff.

Above positions are applicable to all five platforms to be realised by TenneT up to 2023

Questions & concerns

T.9 Metering

Notification

T.9 Metering

Summary of feedback

- **Consensus**. It is possible to centralise the organisation of the accountable metering requirements via one certified party. This party will responsible for the installation, commissioning and maintenance of the metering equipment.
- For the above, changes will be added to the Measurement Code.

Notification

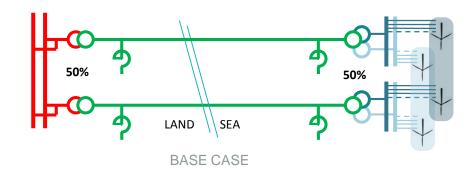
TenneT's position on 'T.9 Metering':

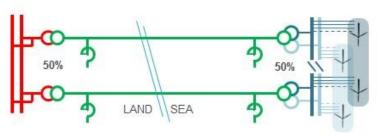
 TenneT intends to centralise the organisation of the accountable metering requirements via one certified party, contracted by TenneT, responsible for the installation, commissioning and maintenance of the metering equipment. The responsibilities of the PPMs as connected party should be dealt with in a connection agreement.

T.12 Redundancy / availability Discussion

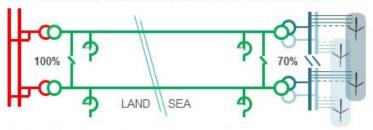
Input

• N.A.

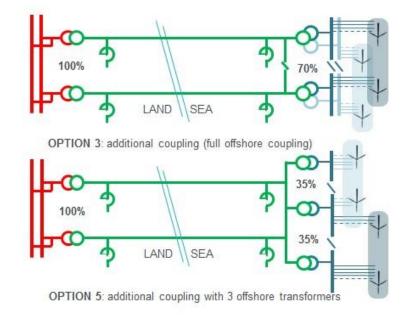

Assessment structure


- 1. Determination of base case topology was determined on the minimum amount of required components and no redundancy at all..
- 2. Determine other topologies by adding or increasing:
 - Coupling (at 33kV/66kV, offshore 220kV, onshore 220kV)
 - Transformer capacity (50% versus 70% offshore and 100% onshore)
 - # of offshore transformers (2 x 50% or 3 x 33%)
- 3. Determine per topology:
 - availability of the offshore grid (average time of outage per year) evaluating failure statistics of the major components;
 - net present value of the (average) loss of income due to loss of (half or the full) connection;
 - additional savings of the increase of redundancy (compared to the base case) and if these savings justify the additional CAPEX.

T.12 Redundancy / availability



Topologies



OPTION 2: basic coupling (coupling offshore at 66kV/33kV side)

OPTION 4: full coupling (on+offshore coupling)

T.12 Redundancy / availability

Results

Topology	CAPEX	NPV of combined CAPEX and cost savings over 20 years			
		high price / kWh	low price / kWh		
Base case	0	0	0		
Option 2 - 66kV coupling	+1	+6	+1		
Option 3 - additional coupling, higher transformer capacity	+6	+3	-4		
Option 4 - full coupling	+8	+4	-5		
Option 5 - additional coupling with 3x35% transformers	+5	+3	-3		

Position

TenneT intends to select the topology "option 2: basic coupling" with coupling at 66 kV level as a basis of design for the offshore grid infrastructure.

Questions & concerns

Lunch

Planning legal consultation

[Information]

T.7 Reactive power compensation Discussion

Input

• N.A.

Options for reactive power compensation

- The reactor can be dimensioned in such way that full compensation is obtained under noload condition (QR=26 MVAr). Under full-load condition the total infield grid system will then be "over-compensated".
- The reactor can be dimensioned in such way that full compensation is obtained under fullload condition (QR=2 MVAr). Under no-load condition the total infield grid system will then be "under-compensated".

Options considered

- 1. Reactor of 26 MVAr (QR) on platform,
- 2. Reactor of 2 MVAr (QR) on platform,
- 3. No reactor on platform, only WTG converter compensation

45

Analysis

35 = convertor losses MW at full load

			(0	OPTION 1 R = 26 MV		OPTION 2 (QR = 2 MVAr)		OPTION 3 (no QR)			COMBI 1-3 (switching 26 MVAr)			
active power	duration	active power	reactive power	apparent power	WTG convertor losses	reactive power	apparent power	WTG convertor losses	reactive power	apparent power	WTG convertor losses	reactive power	apparent power	WTG convertor losses
%	%	MW	MVAr	MVA	MW	MVAr	MVA	MW	MVAr	MVA	MW	MVAr	MVA	MW
0 10	17% 15%	0 35	0,0 0,2	0,0 35,0	0,0 0,1	-23,6 -23,6	23,6 42,2	0,0 0,1	-25,4 -25,4	25,4 43,2	0,0 0,1	0,0 0,2	0,0 35,0	0,0 0,1
20	13%	55 70	0,2 1,0	53,0 70,0	0,1	-23,0	73,6	0,1	-23,4 -24,6	43,2 74,2	0,1	0,2 1,0	70,0	0,1
30	7%	105	2,2	105,0	0,2	-21,6	107,2	0,2	-23,4	107,6	0,2	2,2	105,0	0,2
40	5%	140	3,8	140,1	0,3	-20,0	141,4	0,3	-21,8	141,7	0,3	3,8	140,1	0,3
50	5%	175	6,0	175,1	0,4	-17,8	175,9	0,4	-19,6	176,1	0,4	6,0	175,1	0,4
60	5%	210	8,6	210,2	0,6	-15,0	210,5	0,6	-16,8	210,7	0,6	8,6	210,2	0,6
70	3%	245	11,8	245,3	0,5	-11,8	245,3	0,5	-13,6	245,4	0,5	11,8	245,3	0,5
80	5%	280	15,6	280,4	1,1	-7,8	280,1	1,1	-9,6	280,2	1,1	-9,6	280,2	1,1
90	6%	315	19,2	315,6	1,7	-4,8	315,0	1,7	-6,6	315,1	1,7	-6,6	315,1	1,7
100	22%	350	24,0	350,8	7,7	0,0	350,0	7,7	-1,8	350,0	7,7	-1,8	350,0	7,7
		v	/TG conve	rter: MW	12,8			12,8			12,8			12,7
		pla	atform rea	ctor: MW	0,1			0,0			0,0			0,1
			t	otal: MW	12,8 8			12,83			12,84			12,81
						k€	loss over	20 years (€	30/MWh)		42.189			42.076
							differer	ice in k€ (€	30/MWh)		113			0
						k€l		0 years (€1 ce in k€ (€1			168.757 454			168.303 0

Position

TenneT is inclined to have the reactive power of the infield grid compensated by the PPM, in order to regulate the reactive power of the offshore grid. The reactive power intended to be compensated only making use of the WTG reactive power capabilities.

Questions & concerns

Coffee break

O.2 Stranded asset mitigation Discussion

Input

• N.A.

Risks identified

- 1. Commissioning of the offshore grid is delayed to an extent that start of operation of the PPM's is delayed resulting in loss of production of the PPM's;
- 2. Outage in the offshore grid which will lead to loss of production of the PPM's.

Mitigation

- 1. Planning
 - > Aligning the installation planning of TenneT to the installation planning of the WPO's

2. <u>Telecommunication</u>

In case of a firm and significant delay, TenneT will consider the installation of such a wireless communication interface in consultation with the WPO's

3. Auxilary power (options)

- Install WTGs with a diesel engine powered generator (DG-set) to provide auxiliary power;
- Install a diesel engine powered generator plant (DG-plant) on the offshore platform;
- Delay of installation of the WTGs

Impact on cost (auxiliary power on platform)

Cost impact: high level breakdown

Quantitativ	ve	LCoE Impact	Uncertainty	Comment
Cost eleme	ent TenneT			
	Substation: Platform	0.1%	Low	Increase in platform cost of 4% due to preparation for backup generation capacity (1)(2).
Society				
	Borssele Alpha LCoE impact	0.1%	Medium	Combination of the LCoE impact from separate items above (1)(2).
Impact future years 0.1% Medium		Medium	Impact for future years remains 0.1%, CAPEX impact is not expected to decrease for projects in future years.	
Qualitative	?	LCoE Impact	Uncertainty	Comment
	Technical	none	Medium	Installation and rental of generators and consumables, are comparable for both cases (back up supplied by Developer or TenneT) and are not taken into account in the LCOE calcuation (1).

References: TenneT internal (1), Ecofys internal (2)

Position

TenneT is inclined towards:

(i) not installing, nor make provisions for, a (diesel engine powered) back-up generator plant on the offshore platform to provide auxiliary power for the WTGs; and

(ii) installing a wireless communication interface (emergency facility) between in the offshore platform and onshore substation, only in case a firm and significant delay in realisation of such communication through the export cable fibres.

Questions & concerns

P.1 Planning

Discussion

Input

• Minutes of Meeting stakeholder consultation of 12&13.05.2015

Framework

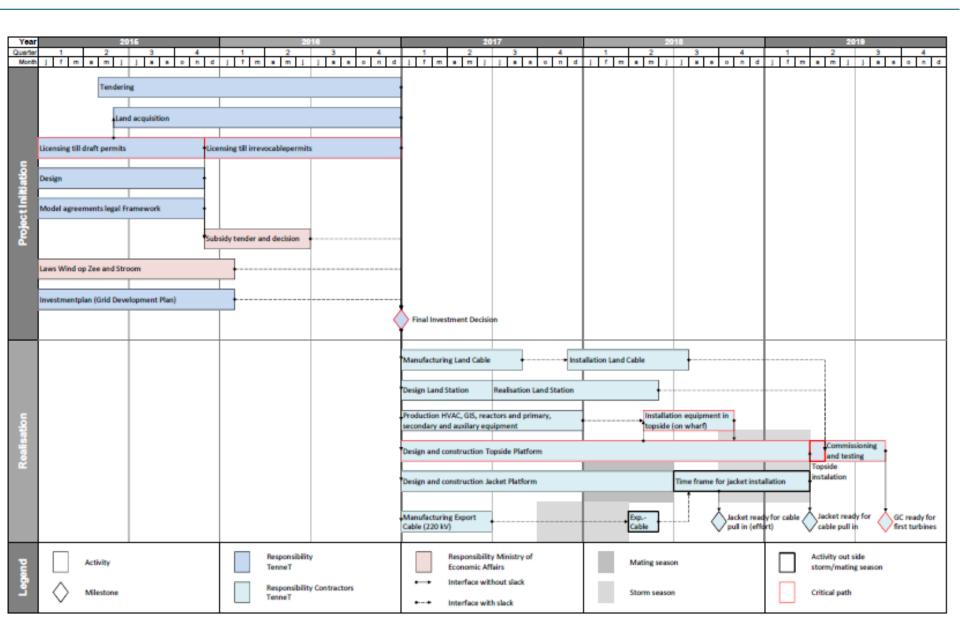
Tender in	Areas Routekaart	Windpower	Operational in		
2015	Borssele	700 MW	2019		
2016	Borssele	700 MW	2020		
2017	Hollandse Kust: Zuid Holland	700 MW	2021		
2018	Hollandse Kust: Zuid Holland	700 MW	2022		
2019	Hollandse Kust: Noord Holland	700 MW	2023		

P.1 Planning

Overall planning Borssele

1. Initiation phase

Resulting in a Financial Investment Decision (FID) planned on 1-1-'17 and is dependent on the following conditions:


- irrevocable permits
- all necessary land acquisitions and crossing agreements
- finished tenders
- financial close
- the subsidy tender decision
- laws "Stroom" and "Wind op zee" in place

2. Realisation phase

Resulting in a commissioned and trial runned grid connection

P.1 Planning

Planning key interaction points between grid connection and OWF

Planning interaction point	Specification	Planning
Jacket ready	 Jacket and cable deck installed Jacket and cable deck ready for pull in and storage of inter-array cables 	31 Mar. 2019 (effort: 30 Sept. 2018, with respect to storm and drilling season)
Grid connection ready	 Topside installed on jacket Export cable connected to top side and land station Grid connection commissioned and fully tested Grid connection ready for connection with the first turbines Grid connection ready for power supply and transport 	31 Aug. 2019

Planning uncertainties and mitigation

Uncertainty	Mitigation			
Mistakes in permits	Extensive review process on permit application			
Public resistance	Stakeholder management and analysis			
Unexpected conditions (soil, UXO, archaeology)	Extensive soil investigation			
Bad weather	 Introduce weather window in planning Determine tender criteria for dealing with weather windows Analysis of historical weather data 			
Restrictions flora and fauna (mating season fishes)	 Introduce mating window in planning Early consultation with responsible authorities Possible usage of bubble screen 			
Production slots lead to longer lead times	Check possible throughput time with suppliers in market consultation			
Vessels, equipment and yards not available	Check possible availability in market consultation			
Problems at internal and external interfaces	Interface management			

Position

TenneT plans to have the grid connection for Borssele Alpha ready 31 August 2019. The jacket will be ready 30 September 2018. The specification of these interaction points with the planning of the OWF's is given in this memo.

TenneT will not anticipate on a possible later start date of the operation phase, according to the agreement that the last possible start of the subsidy payment is 5 years after the subsidy tender decision.

A tight cooperation with the OWF-developers will be pursued to mitigate and anticipate possible delays or accelerations.

Questions & concerns

Closure

Thank you

