Phase II – Pathways to 2050 TenneT Webinar, Berlin

Univ.-Prof. Dr.-Ing. Albert Moser

Study Phase II - Introduction

Achieving Paris Climate Agreement targets

- Defossilization of CO₂ emitting sectors necessary to meet 2°C or even 1.5°C goal
- Profound changes in energy demand and supply structure required
- Challenges for future energy systems and infrastructures

Coupling of electricity, hydrogen and methane infrastructures as key concept for integration of RES in the energy system

- Generation, conversion and utilization of renewable electricity, green hydrogen and green methane to cover energy demands
- Flexible use of advantageous energy carrier for transmission and storage
- Future energy system designs and transition path unclear

Need for model based investigation of sector coupled systems

Study Phase II – Pathway to a Sector Coupled System in 2050

Previous Step: Infrastructure Outlook 2050 (IO2050): Sector Coupling in 2050 is necessary

Results:

- An energy system based on domestic RES depends on coupled gas and electricity grids
- Coupling of systems reduces need for additional electricity lines
- Need for adequately located PtG units as well as hydrogen and methane storages

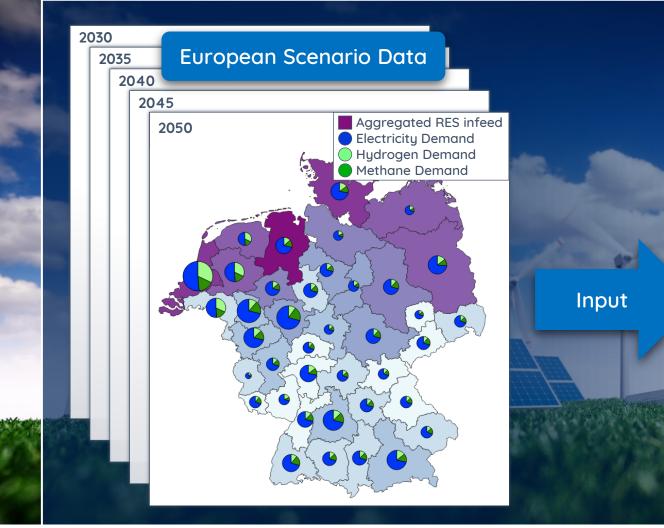
2030	2035	2040	2045	2050
	· · · ·	N COL		ENERGY STORAGE

Present Study: Phase II – Pathways to 2050: Insights into possible paths to a sector coupled system from 2030 to 2050

Open Questions:

- When and where should sector coupling assets be installed to minimize overall costs?
- What infrastructure developments are necessary to meet the energy system's requirements?

Approach


- Development and application of an investment planning tool considering Europe from 2030 to 2050
- Development of consistent scenarios for the investigated scope
- Investigating different scenarios to evaluate impact of input parameter variation

Tailored Optimization Model developed for this Study

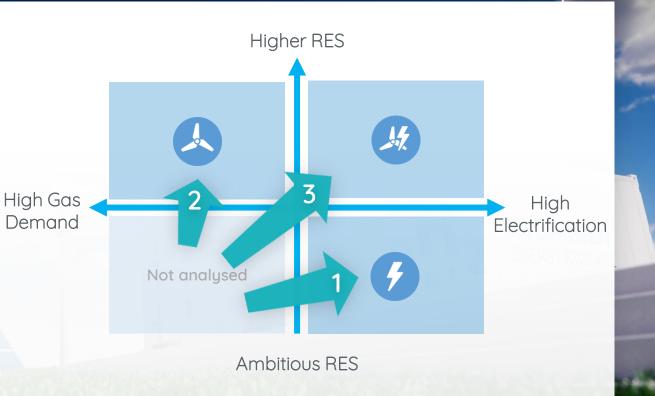
JULICH

еппет

Integrated Investment and Dispatch Model

- Minimization of total system costs: Investment and dispatch
- Coverage of electricity, methane and hydrogen sectors
- Complying with given emission targets for the future
- Optimization of (de-)investment and dispatch of key assets
- High spatial resolution for focus area (e.g. DE with 35 regions)
 - Transmission capacities for all sectors modelled with NTC approach

• High temporal resolution


• Simulation of representative years (2030– 2050) and representative situations (several characteristic weeks per year)

Scenarios

- Simulation of three scenarios with high expected impact on transport infrastructure
- Scenarios investigate
 - 1. higher electrification (EL & RES)
 - 2. higher RES (GAS & RES+)
 - 3. higher electrification & higher RES (EL & RES+)

All scenarios

- reach 95% CO₂ reduction target in 2050
- have the time horizon 2030 2050
- investigate 52 simulated regions in Europe, focus on DE and NL (focus area)

Key Insights - Overview

Key Insights - What do the numbers tell us?

Global imports of CO₂-neutral gases to Europe, i.e. green hydrogen, synthetic methane and others, will become an essential part of the energy supply in all scenarios. 2 Coordinated Investments

Investment decisions on the demand side (electric, gas-based or hybrid) need to be coordinated with the development of the integrated energy infrastructure in order to avoid inefficiencies.

Further development of the energy transmission infrastructure (electricity, H_2 and CH_4) beyond 2030 is essential for the future energy system. This development needs to be planned timely in an integrated way to find optimal solutions for an affordable energy transition.

Power-to-Gas is a key technology for the next step in the energy transition.

Storages and dispatchable power plants as sources for flexibility are required to ensure a reliable, CO₂neutral demand coverage for each energy carrier. 6 Integrated Energy System

A smart, flexible investment in and usage of European energy infrastructure – both for electricity and gas – plays an important role for the aim of an affordable energy system.

Key Insights - Overview

Key Insights - What do the numbers tell us?

Global imports of CO₂-neutral gases to Europe, i.e. green hydrogen, synthetic methane and others, will become an essential part of the energy supply in all scenarios.

Investment decisions on the demand side (electric, gas-based or hybrid) need to be coordinated with the development of the integrated enerau infrastructure in order to avoid inefficiencies.

Further development of the energy transmission infrastructure (electricity, H_2 and CH_4) beyond 2030 is essential for the future energy system. This development needs to be planned timely in an integrated way to find optimal solutions for an affordable energy transition.

Power-to-Gas is a key technology for the next step in the energu transition.

5 Flexibility

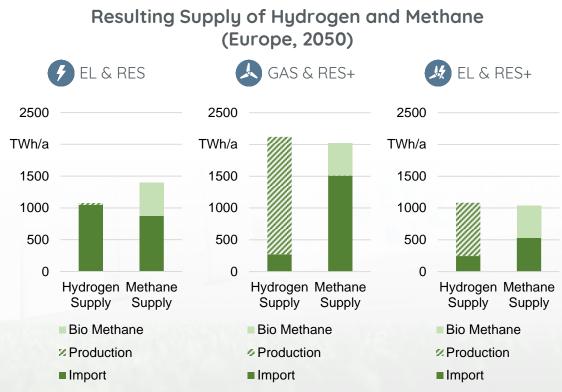
Storages and dispatchable power plants as sources for flexibility are required to ensure a reliable, CO_2 neutral demand coverage for each energy carrier.

A smart, flexible investment in and usage of European enerau infrastructure both for electricity and gas – plays an important role for the aim of an affordable energy system.

Integrated

Energy System

6


Key Insights - Imports

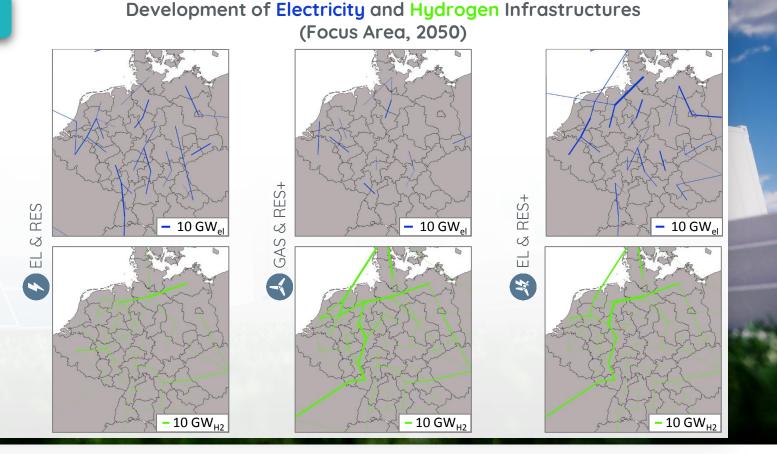
Key Insights – Global imports of CO₂ neutral gases to Europe & high RES

Imports

ennet

- Regardless of the total installed RES capacities within Europe, a complete European energy autarky is not achievable in any of the scenarios.
- Imports of CO₂ neutral energy carriers are an essential part of the European energy supply in all scenarios.
- Extensive RES development surpassing current accelerating national plans in Europe is necessary to work towards CO₂ reduction targets in line with the Paris Agreement and to decrease European energy imports simultaneously.

Key Insights – Infrastructure Investments

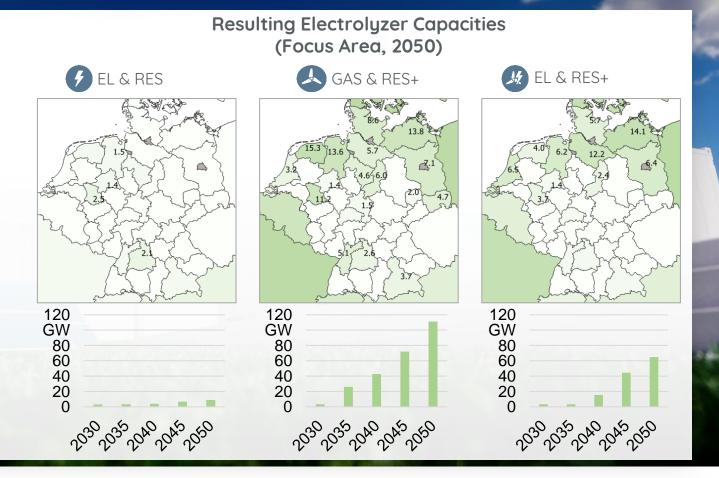

Key Insights – Energy transmission infrastructure (electricity, H₂ and CH₄) beyond 2030

JULICH

3 Infrastructure Investments

- Electricity transmission infrastructure needs to be expanded beyond 2030 in all scenarios.
- EU-wide hydrogen grid needs to be developed by refitting of existing methane transmission infrastructure.
- Existing methane transmission infrastructure sufficient for future needs. No expansion required.

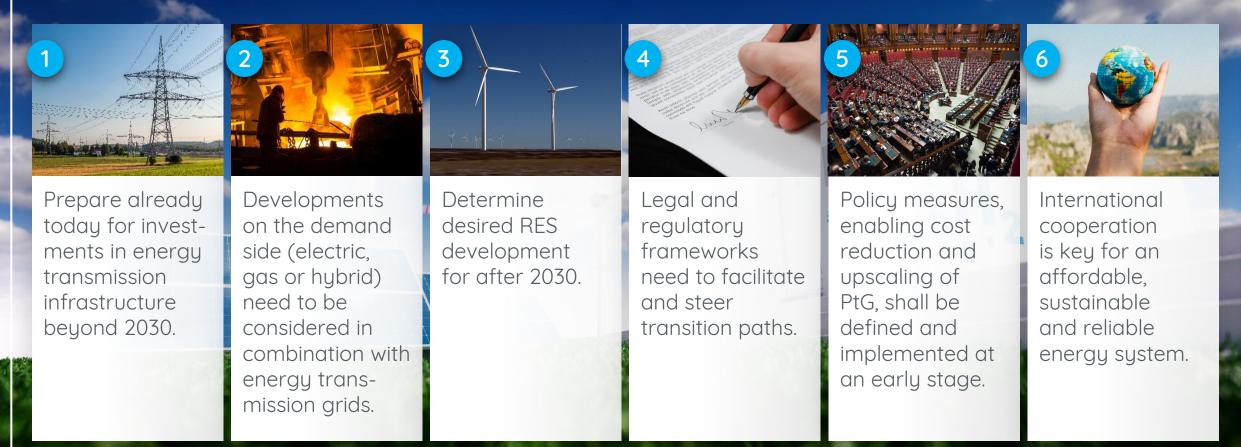
ennet


Key Insights – Power-to-Gas Investments

Key Insights – Power-to-Gas is a key technology for the energy transition

JULICH

4 Power-to-Gas Investments


- Investment in and dispatch of PtG units depend on the overall and regional surplus of RES supply to the energy system.
- PtG units are largely located close to electricity production centers from wind energy.
- In the Electrification scenario, PtG may play an important role outside of Europe to facilitate increased imports of CO₂ neutral energy carriers.

Key Stakeholder Impacts

Key Stakeholder Impacts - What do we need to do?

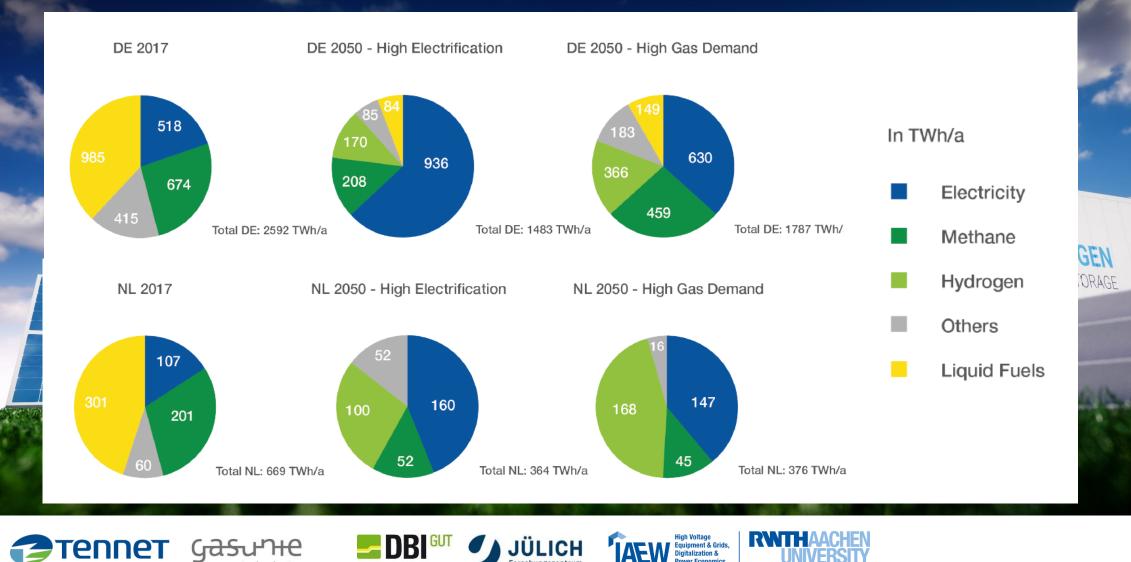
Univ.-Prof. Dr.-Ing. Albert Moser

Institut für Elektrische Anlagen und Netze, Digitalisierung und Energiewirtschaft (IAEW) RWTH Aachen University info@iaew.rwth-aachen.de

Scenario Data

Scenario Data - Demand

and the second second										And and a second second
			2050							
the second			💋 EL & RES		👃 Gas & RES+		🛃 EL & RES+		August 1	
				Germany	Netherlands	Germany	Netherlands	Germany	Netherlands	A altered
A COMPANY			Electricity	164	23	113	15	164	23	1 1
		Buildings Heating	Hydrogen	0	6	0	61	0	6	2.00
Energy Demands [TWhd]			Methane	24	22	170	19	24	22	
			Others	19	41	118	5	29	41	
		Buildings Appliances	Electricity	173	66	213	66	173	66	HYDROGEN
	ŧ		Electricity	490	47	217	47	490	47	ENERGY STORAGE
	Nh/a]		Hydrogen	37	68	163	68	37	68	
			Methane	171	1	267	1	171	1	
	nand	Transport	Electricity	110	24	86	18	110	24	and and the series
	y Der		Hydrogen	133	25	203	39	133	25	
		Methane	13	29	21	24	13	29		
	ш		Liquid Fuels	84	0	149	0	84	0	
								H-		



RY

Scenario Data - Demand

crossing borders in energy

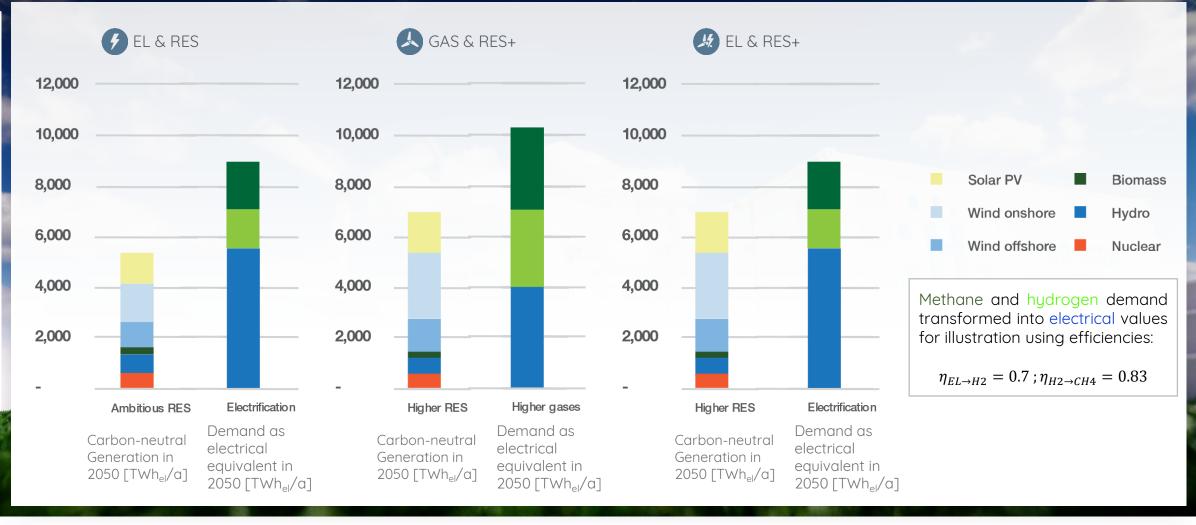
Gas- und Umwelttechnik GmbH

Forschungszentrum

Scenario Data – Generation Capacities

and the second second			and the second se							All and the second second
			2050							
				💋 EL & RES		Gas & RES+		🛃 EL & RES+		And and the
and the second second	- 23			Germany	Netherlands	Germany	Netherlands	Germany	Netherlands	A allowed
A COLOR			PV	165	34	218	85	218	85	
and the second se		RES	Wind Onshore	179	14	210	16	210	16	2 de
and the second			Wind Offshore	53	53	64	53	64	53	
Contraction of the local division of the loc			Biomass	10	0,5	10	0,5	10	0,5	
Statement Statement	_		Run-of-River	4	0,1	4	0,1	4	0,1	HYDROGEN
Capacities [GW]	۲ GW		Nuclear	0	0	0	0	0	0	ENERGY STORAGE
	cities	Power Plants	Lignite	0	0	0	0	0	0	
	Capa		Coal	0	0	0	0	0	0	
	Generation (Oil	3	0	3	0	3	0	A see all the all the
			Hydrogen	Reced on Cinculation Reculto						
		Methane		Based on Simulation Results				L. Margaret and an		

Scenario Data – Generation Capacities



Scenario Data – Supply & Demand

7 Tennet

Gasune

RNTH

Scenario Data – Investments

Assumed Expansion and Reutilization Costs

Grid Expansion

- Data based on German Grid Development Plans, Input from Partners, Assumptions
- Assumed distance from node center to node center to consider necessary internal grid expansion

Power Line Connection	2.2	Mio.€/(GW*km)
Methane Pipeline Connection	0.2	Mio.€/(GW*km)
Hydrogen Pipeline Connection	0.2	Mio.€/(GW*km)
Methane to Hydrogen Conversion	0.01	Mio.€/(GW*km)

Power Plant Investments

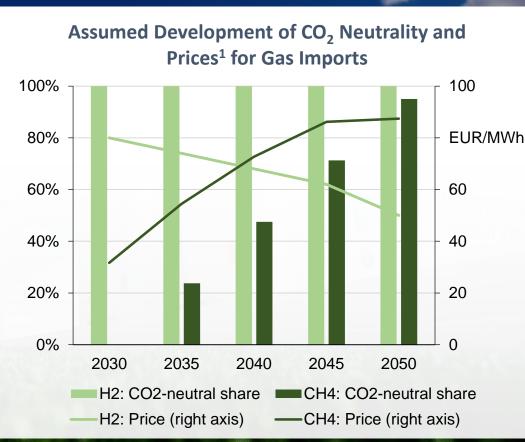
• Due to strict RES targets, only investments in CH4- and H2-fired power plants modelled

CH ₄ -fired power plants:	750	Mio.€/GW
H ₂ -fired power plants:	750	Mio. € / GW

Power to Gas Units

AEL:	2030: 790 Mio. € / GW	2050: 363.4 Mio. € / GW
PEM:	2030: 1350 Mio. € / GW	2050: 243 Mio. € / GW
Methanation:	2030 until 2050: 400 Mio	. € / GW

Scenario Data – Imports


Assumptions on Gas Imports

Prices

- Decreasing prices assumed for import of H_2 , due to assumption of increasing availability of green H_2
- Increasing CH_4 price due to increasing share of green CH_4
- Price assumptions based on Frontier Economics and World Energy Outlook

CO₂ neutrality of imports

- CO_2 neutrality assumed for imported H₂
- Imported CH₄ contains rising share of green methane: in 2050 95% CO₂ neutral

